The functions se_naka, re_naka, hce_naka, and ae_naka provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the Nakagami distribution and \(\delta\).
Arguments
alpha
The strictly positive scale parameter of the Nakagami distribution (\(\alpha > 0\)).
beta
The strictly positive shape parameter of the Nakagami distribution (\(\beta > 0\)).
delta
The strictly positive parameter (\(\delta > 0\)) and (\(\delta \ne 1\)).
Author
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Details
The following is the probability density function of the Nakagami distribution:
$$
f(x)=\frac{2\alpha^{\alpha}}{\Gamma(\alpha)\beta^{\alpha}}x^{2\alpha-1}e^{-\frac{\alpha x^{2}}{\beta}},
$$
where \(x > 0\), \(\alpha > 0\) and \(\beta > 0\), and \(\Gamma(a)\) is the standard gamma function.
References
Schwartz, J., Godwin, R. T., & Giles, D. E. (2013). Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution. Journal of Statistical Computation and Simulation, 83(3), 434-445.